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A biologically plausible robot attention model, based on space

and time

Anna Belardinelli * Fiona Pirri

Abstract In this work we describe a biological in-
spired approach to robot attention, developed on the
basis of experiments aimed to map human visual
search onto robot behaviour, allowing particularly for
depth as a further feature in the attention model. By
means of a purposely-designed machine we studied
fixation zones elicited from scanning paths that were
performed during a task driven wandering of subjects’
gaze over a cluttered scene. Hence, we defined pref-
erence criteria and a utility function accounting for the
optimization of visnal endeavours. This function would
allow a robot to select meaningful spots without the
need to process the whole scene.
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Introduction

Visual attention 1s a crucial skill for robots and com-
puter vision systems to be endowed with, as it allows an
optimal deployment of visual and processing resources
only on interesting parts of the visual field.

Visual attention has been deeply investigated to
assess how human beings orient gaze and which strat-
egies are applied in order to focus rapidly on salient
regions. This ability is crucial in several automatic tasks
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too, such as search and surveillance, besides object
recognition and human-robot interaction.

Treisman and Gelade (1980) proposed a model that
gained most credit in past years. According to their
framework mechanisms of focused attention are driven
by several features such as colour, intensity, and edge
orientations, separately or conjunctly perceived.
Inspired by this insight, Ttti and Koch (2001), Niebur
et al. (2001), among others, modelled features extrac-
tion and recombination in artificial systems leading to
the construction of saliency maps, as a bottom-up
control tool for attention in autonomous agents.

Spatial attention drives gaze orienting, particularly
in visual search tasks, where a top-down component is
present, in that the subject knows approximately what
he is looking for and what he expects to see. Atten-
tion proceeds along a sequence of fixations and gaze
shifts, while observing a scene. Indeed, the fovea can
rapidly move from an object to another nearby that
gained interest according to its feature properties.
Throughout these movements visual information 1is
not processed, being rather left out of the focusing
process, a phenomenon known as change blindness
(Simons and Levin 1997; Rensink et al. 2000). This
mechanism allows the human brain to build a sam-
pled, discrete representation of the space instead of a
continuous, detailed one. Analogously, in artificial
systems, frames collected by cameras on robot heads
performing fast rotational and translational move-
ments can be filtered out of the attention process, as
they will be blurred and not meaningful, saving in this
way visual and processing resources. In our experi-
ments we studied fixations occurred in a task-driven
wandering of the gaze over wide scenes. Since these
were 3D environments, displaying a large set of depth
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planes we considered how depth would intervene in
scanning strategies.

The way depth affects attention deployment has
been researched only in recent years in the field of
Cognitive Sciences. In this sense, Theeuwes et al
(1998) showed that mechanisms grouping contiguous
objects work discriminating different depth planes.
Several authors (Previc 1998; Maringelli et al. 2001;
Couyoumdjian et al. 2003) suggested that different
mental representations are used for far and near space
according to the diverse specificity of the performable
tasks (mainly perceptual or motor, respectively).

In artificial systems, depth was integrated as an
ulterior feature in the construction of the saliency map
by Ouerhani and Hiigli (2000), while Frintrop et al.
(2004) used visual attention onto range images within
an object recognition task.

The above considerations underpin our approach to
strategy based task-driven attention to attain a model
for the automatic generation of likely scanning paths.
Paths are defined in terms of a sequence of rotation
angles to be performed by the robot head equipped
with a stereo camera. Fixation zones can be determined
by means of a utility function deduced once the data
recorded from subjects’ performances (fixation points
and gaze velocities) were reported on a mosaic scene.

Experimental setup and data processing

To record data from a subject observing a scene we
used a purposely designed ‘‘gaze machine’ consisting
of a stereo camera and an inertial platform aligned
along the optical axis and mounted on a helmet worn
by the subject. A further camera was placed on the
helmet edge, pointing to the right eye and working as
eye-tracker. In this way we were able to store data
related to the subjects’ head and eye movements, as
well as those related to their vantage point.

Three subjects (with normal or correct to normal
vision) were asked to observe an environment and to
search a not specified number of targets, placed on
different planes. The subjects were sitting and could
rotate only their head. They were told to fixate briefly
every detected target and then to search on for the
others. In the process frames from the stereo camera,
including depth information, and rotation angles from
the inertial platform were recorded conjunctly.

Afterwards a mosaic image was assembled from the
RGB frames, in order to project the gaze itinerary
upon it.

We will refer in the sequel to an image as a pair of
frames (F¢,Fp), where Fe is the colour image

m xnx3, taking values in the range of the three
channels red, green and blue, and Wy is the distance
image m X n X 3, taking values in the range (—ee,<), i.e.
to a pixel [x, y]T will correspond the pixel projection in
real world coordinates [Xy, Y, Zw] (the first two
coordinates, however, are of no use as they are relative
to the point of view of the current frame).

An attention sequence is thus a sequence of pairs
Tep = (Fe, Fp), indexed with time.

We supposed that at each instant the stared object
was to be found in the center of the current frame. The
center coordinates were then translated of a value
k = 15 pixels that would allow for the distance between
the eyes and the camera baseline. Moreover, the
coordinates were possibly corrected according to the
direction and angle extracted from the eye-tracker.
Eventually the attained point shall be referred as a
gaze gafe.

The head angles, i.e. yaw (pan) angle ¢ and pitch
(tilt) angle &, along with Z,, were used to estimate [X,
Y, Z:), the real world coordinates of every gaze gate,
by means of the rotation matrices.

Fixations gates were distinguished from gaze shifts
on the base of a threshold applied to gaze velocity,
obtained similarly as in Koch (2004):
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Here (@,, o, ;) and (U, V, W) denote the rota-
tional and translational velocities, respectively, at time
L.

As said above, to appreciate the distribution of gaze
shifts over the whole scene the gaze gates of the se-
quence T, were projected on a panoramic scene,
obtained by mosaicing several frames.

A suitable transformation was defined to pass from
real world coordinates to pixel coordinates on the
mosaic (taking account of focus and mosaic distortion):
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Here « > 0 is a parameter.

A gaze search model

On 2D images translational shifts along the depth axis
are hardly detectable, compared with shift along the x




or y axis. It is therefore crucial to consider the gaze
shifting along every dimension to understand why a
specific area of the scene attracts the subjects’ gaze
driven by a visual task.

We could note that, however, the gaze behaviour
could not be explained only by a distance criterion.
As it could be expected, a great amount of gaze gates
were collected in areas with the highest frequency.
We assumed, moreover, that further criteria would
influence an underlying optimization process, such as
the ease at memorizing certain zones or the effect of
cluttered regions on recurrent paths. Scene analysis is
influenced by classical Gestalt criteria and visual
attention is determined both by object and spatial
factors (Mozer and Vecera 2005). Space-based
attention is responsible for grouping of contiguous
locations, whereas an object-based attention allows
grouping based on features likely to belong to the
same objects. Therefore, we segmented the mosaic
according to features like colour, gradient, spatial
context and mean location depth, as they help to
convey both memorization and spatial representation.
For example, fixations were sparse on uniform re-
gions as opposed to cluttered ones. In fact, dense
regions require several fixations and shifts between
close locations, as targets might be hidden and it
might be more difficult to identify them.

A k-mean segmentation was produced from colour,
gradient and context normalised data. These latter
come from a partition of the scene in spatially unified
zone, labelled by smoothness order.

The depth data were separately segmented parti-
tioning the scene in sectors and assigning them the
corresponding mean depth value.

These segmentations were used to classify areas
likely to atiract fixations. Hence, we introduced a
utility function u: L—R, [ is the utility space
according to segmentation criteria. This function
assigns high utility values to spots in the scene likely to
produce a fixation.

Therefore the expected utility of a vector of gaze
gates X = (xy Xp,...,x,) can be written as:
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where Mp is the depth map, f3,: (x) is the density of
gaze gate x according to parametric zones ¢ and s, i is
the utility function. Considering k& distance areas
{depending on the volume of the scene) we defined py
(x) according to the depth map as a Boltzmann distri-
bution, thus considering further gaze gates less likely
than closer ones.

Analogously, we define a probability of x to
belong to a zone s, p, (x), according to the area
and depth of s. Finally the probability to enter a gate
X is:

Foalx) oc app(x) + (1 — 2)p(x)

Here « is a mixing parameter, consistently defined
with the scene depth.

However, while a wide wall could have a high
probability due to its surface it might be glimpsed at
just once if no target occurs on it. A utility function is
thus defined for each criterion. With respect to depth
we define u(z) = &~k (z/f), with f a threshold. With
respect to context memorization we take a fixed value
y, and finally with respect to frequency we introduce a
value & proportional to the gradient of the area.
Considering that z is given by the depth map, we
obtain:

ugs(x) =u(z) +y+4

We consider a configuration of attention to be the
smallest number of gaze gates maximizing the ex-
pected utility. We computed it on the mosaics of the
experiments noting a strong correlation between
attention and space classification yielded by segmen-
tation based on distance, memorization and frequency
criteria.
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